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Thermoacoustic refrigeration occurs in periodic flow in a duct with heat transfer within 
the fluid and to the tube. This study considers the periodic limit cycle with large 
pressure oscillations that is obtained in a tube when prescribed, phase-shifted, periodic 
velocities at the tube ends, at frequencies lower than acoustic eigenmodes, sweep a 
length comparable to the tube length. The temperature differences between the two 
ends are of arbitrary magnitude, heat transfer in the transverse direction within the 
fluid is assumed to be very effective and the thermal mass of the wall is large. The 
geometry is two-dimensional, axisymmetric, and conduction is accounted for, not only 
in the fluid, but also with and within the tube wall. A perturbation solution valid in a 
local near-isothermal limit determines the equilibrium longitudinal temperature profile 
that is reached at the periodic regime, the pressure field including longitudinal 
gradients, and the longitudinal enthalpy flux. Results are presented for tubes open at 
both ends and also with one end closed. In the latter case, a singularity occurs in the 
temperature at the closed end, with behaviour identical to Rott’s result for acoustic 
flow with small pressure amplitude. Other new results obtained for tubes open at both 
ends show that when velocities at both ends are in opposite phase, internal singularities 
in the temperature profiles may occur. 

1. Introduction 
Thermoacoustic phenomena include Taconis waves (Taconis et at. 1949), the 

Hartmann-Sprenger tube (Sprenger 1954), acoustic refrigeration (Swift 1988), pulse- 
tube refrigeration (Gifford & Longsworth 1964, 1966; Radebaugh 1990) and thermal- 
lag engines (West 1993). The first account of conduction in acoustics is due to 
Kirchhoff (1868), whose theory was included in Lord Rayleigh’s (1896) book and later 
picked up by Kramers (1949) to explain the phenomena noted by Taconis et al. (1949). 
Rott (1969, 1973), Rott & Zouzoulas (1976), Zouzoulas & Rott (1976), and Muller & 
Rott (1 983) then consolidated this and provided definitive treatment of near-resonant 
thermally driven acoustic flow. 

Self-sustained oscillations known as Taconis waves occur in cryogenic storage, in a 
tube with a closed end exposed to ambient temperature and an open end inside a liquid 
helium bath. The conditions under which these oscillations develop spontaneously can 
be found by linear stability analysis about a prescribed temperature distribution, which 
yields a dispersion relation. The locus of purely imaginary frequencies in parameter 
space determines the stability boundary. This model is acoustic; the frequencies are 
acoustic eigenmodes for the specified temperature profile. 

Also in the small amplitude near-resonant acoustic limit, Merkli & Thomann (1975) 
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studied heat streaming in thermoacoustics. Thomann (1976) and Rott (1975) evaluated 
the enthalpy flux, respectively in the case of Stokes layers larger and smaller than the 
tube diameter. Both cases, of narrow and wide tubes, were included in Rott’s final 1984 
paper. In contrast with the present one, these studies considered prescribed longitudinal 
temperature distributions, away from equilibrium, hence a non-uniform enthalpy flux 
along the tube. But then, as the amplitude of the motion increases, the wall temperature 
evolves in response to the imbalance in heat transfer with the fluid, until a limit cycle 
is reached and the enthalpy flux becomes uniform. Meanwhile, the amplitude of the 
motion and the pressure oscillations increase, nonlinear interactions become significant 
and linearized analysis is no longer valid at the limit cycle. 

The present study is concerned with a situation akin to that limit cycle, which arises 
in the context of oscillating flows with large pressure fluctuations and large energy 
exchanges in the presence of large absolute temperature differences, and leads to a 
different problem formulation: for prescribed motions at the tube ends, to find the 
equilibrium longitudinal temperature distribution at the stationary periodic regime, 
when the energy transfers are thus balanced. The present analysis successfully determines 
the limit cycle where Rott’s approach fails, because of one key difference in the scaling 
of the problem: this study considers frequencies lower than acoustics, or in other 
words, non-acoustically resonant flow. It encompasses situations where it is the forced 
motion at both ends of the tube that determines the frequency, which is thus no longer 
an eigenvalue but a parameter belonging in the problem statement, and can thus be 
lower than the resonant modes. While the low-frequency motion can still realistically 
be described as a low-Mach-number motion, in contrast with Rott’s small 
displacements, the amplitude is now comparable to the tube length. Finally, if the 
motion sweeps a large fraction of the tube length, then the mass of fluid in the tube 
experiences large fluctuations, so that temporal pressure oscillations now have a 
magnitude comparable to the mean pressure. 

Even for Taconis waves, non-acoustic models have been suggested (Rudman 1994). 
Experiments (Gu & Timmerhaus 1994) point to wavelengths much larger than the tube 
length. Thus, even then, the physically relevant frequencies may often be much lower 
than the acoustic frequencies considered in the previous studies, and the current theory 
may still be applicable. 

Additionally, this study is restricted to diameters smaller than the heat penetration 
depth and to the case of a wall with large thermal mass. Under these two conditions, 
the temperature of the fluid is nearly uniform in the transverse direction, and time 
independent. This leads to a perturbation scheme based upon the diameter being small 
compared to the thermal boundary layer, and the thermal mass of the gas being small 
compared to the wall’s. The leading-order temperature varies then only along the tube 
length, but remains arbitrary in the leading-order problem. (In Rott’s model, 
transverse temperature fluctuations are small too, but for a different reason: the 
motion is of sufficiently small amplitude so that, over the length swept by the fluid, 
fluctuations due to the longitudinal wall temperature gradient are small.) 

In the periodic regime, the net enthalpy flux over the full period is necessarily 
uniform. In the perturbation solution, periodicity of the higher-order temperature 
fluctuations requires uniformity of the net total enthalpy flux, including conduction in 
the wall, which leads to a condition that ultimately determines the leading-order 
temperature profile. Once that profile is determined, a complete solution is readily 
found, including the enthalpy flux, the axial and radial velocities, the pressure 
fluctuation and the pressure gradient. 

Potential applications of this theory include tubular regenerators, basic pulse-tube 
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refrigeration, gas springs (Mirels 1994 a)  and, generally, heat exchangers and other 
cases of narrow flow passages subjected to large pressure oscillations in which the 
pressure gradients are relatively small compared with the temporal fluctuation. While 
application to the basic pulse-tube is only valid in the narrow-tube limit, it also has 
some advantages compared with small-amplitude linear models (Lee et al. 1995; Mirels 
1994b) which do not suffer from the narrow-tube limitation but instead, assume a small 
temperature amplitude, a small pressure fluctuation and a small sweep. Both 
approaches are complementary in that they cover different regions in the parameter 
space and that they suffer from different limitations. The current analysis is not 
applicable to resonant pulse-tube refrigerators, which are more accurately described by 
Rott’s linearized theory, nor to orifice-type pulse-tube refrigerators, which are typically 
constructed with a large diameter, avoiding as much as possible true thermoacoustic 
effects, and which can then be analysed as a variant of the Stirling cycle (Kittel 1992). 
The energy fluxes in a large tube can be predicted using an adiabatic model, such as 
that of Storch & Radebaugh (1988). 

The main goal here is development of the low-frequency theory, which targets a 
generic case in which velocities are prescribed at both ends of the tube. Additionally, 
to show the power of the theory, two cases are solved in some detail below. The first 
one considers a tube closed at one end, in which case all leading-order entropy and 
energy exchanges vanish. In the absence of a heat exchanger at the closed end, this 
system turns into a degenerate case of a pulse-tube refrigerator. The second case 
considers non-zero velocities at both ends, yielding a non-zero leading-order entropy 
flux, typical of the Stirling cycle. 

Remarkably, in the case of a tube closed at one end, and neglecting longitudinal 
conduction in the wall, the same singular behaviour as noted by Rott (1984) in the 
temperature profile is obtained at the closed end. For flows that are strictly of opposite 
phase at the ends, the temperature profile also exhibits a singularity, but at a location 
inside the tube where velocity remains zero. 

Finally, it is interesting to compare the results obtained here, which are based upon 
a full solution for the complete velocity field, the pressure field including viscous 
gradients and the two-dimensional temperature field, to the results produced by a 
similar one-dimensional nearly isothermal model based upon empirical friction and 
convection correlations (Bauwens 1995). The comparison shows that even in the 
laminar limit, and using the exact Nusselt number for tubes, the one-dimensional 
model does not quite yield the correct solution for the contribution to the enthaipy flux 
due to pressure oscillations. Thus, strictly speaking, the one-dimensional model is only 
valid for systems open to a large pressure reservoir so that pressure remains uniform. 

2. The near-isothermal model 
The current model is near-isothermal, using the meaning of the word from the heat 

engine literature, in which context the basic idea underlying the near-isothermal model 
originally arose. Thus, a device in which local temperatures are time independent is 
characterized as isothermal even though the spatial, longitudinal temperature gradients 
may be large. Strictly speaking, it is isothermal only locally. This contrasts with the 
large industrial regenerators studied by Hausen (1929) and Schmidt & Willmott (1981), 
which are nearly isothermal globally, in which the pressure fluctuations are small and 
the blow time is considerably larger than the residence time, and which are well- 
described by a constant-density model. 

The near-isothermal idea was originally proposed by Rea & Smith (1967), who 
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mentioned applicability to pulse-tubes also, and by Qvale & Smith (1969), and 
independently by Bauwens (1995). If heat transfer is very efficient and the thermal mass 
of the wall or matrix is large, fluid and wall are then at approximately the same time- 
independent temperature. Nearly all the enthalpy of the fluid entering the tube or 
regenerator is returned when the fluid returns. In the limit, if both the heat transfer 
coefficient and the thermal mass are infinite, the ideal isothermal model due to Schmidt 
(1871; see also Urieli & Berchowitz 1984) is obtained. 

If the system were truly isothermal, and with infinite thermal mass, its temperature 
would never change. Thus, the longitudinal temperature would be determined at all 
times by its initial value, and any arbitrary initial temperature distribution would be a 
valid temperature profile at all times. However, even for very small departures from 
strict isothermality, the stationary, periodic regime can no longer be maintained for 
arbitrary temperature profiles. In the stationary regime, the total net enthalpy flux 
including conduction in the wall over one full period is necessarily uniform along the 
length, otherwise the temperatures do not return to their initial value at the end of the 
period, and they cannot be periodic functions of time. 

Qvale & Smith observed that the temperature profile is ultimately determined by 
longitudinal uniformity of the enthalpy flux. They in effect represented temperatures by 
what amounts to a uniform spanwise and time-independent leading-order ap- 
proximation, plus a small perturbation which varies with time and along the transverse 
direction, but they did not actually solve for temperature. Instead, they arbitrarily 
assumed a fourth-order polynomial expression, the lowest order allowing for equality 
of the enthalpy flux at both ends - but not elsewhere along the regenerator length. Only 
recently has a full one-dimensional solution for the temperature profile appeared 
(Bauwens 1995). A related harmonic regenerator model (based upon a scaling and a 
perturbation scheme similar to Rott’s), in which the longitudinal equilibrium 
temperatures are determined by enthalpy flux uniformity, was recently proposed by 
Swift & Ward (1995). 

Regenerators are typically made of screens or other irregular material, with 
complicated topology, which often cannot be characterized in detail, so that, even at 
the low Reynolds numbers typical of regenerators, a full three-dimensional solution 
resolving the temperature, pressure and velocity fields, is not feasible. Instead, the flow 
is approximated as one-dimensional in space (and time dependent). However, then, 
velocity and temperature are no longer resolved in the transverse direction so that 
viscous losses and heat transfer can no longer be determined according to the true 
physical models. Instead, heat transfer between fluid and matrix and viscous losses are 
evaluated using an empirical convection coefficient and an empirical friction factor. 
But empirical correlations giving the Nusselt or Stanton number and the friction factor 
as functions of the Reynolds number are measured in steady flow experiments, hence, 
unavoidably, uniform pressure. This inconsistency is unavoidable in one-dimensional 
models, whether approximate, semi-analytical, or fully discretized numerical codes 
(Gary & Radebaugh 1989; Gedeon 1986; Bauwens & Mitchell 1991). 

The idea underlying the nearly isothermal one-dimensional regenerator model also 
applies to the two-dimensional flow in a tube that is of interest here. Additionally, in 
the two-dimensional solution, transverse gradients can be fully resolved. The effect of 
viscous stresses on the pressure gradient is thus determined using the viscosity law, and 
heat transfer is based upon transverse heat diffusion according to Fourier’s law. 
Consequently, the two-dimensional tube solution avoids the main weakness of one- 
dimensional regenerator models, namely the empirical friction and convection models, 
albeit for a simpler topology. 
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3. Two-dimensional problem and magnitude assumptions 
A periodic solution for the flow and temperature field in a round tube is sought, with 

heat transfer between the fluid and the tube. At each end, the volumetric flow is a 
known periodic function of time, the velocity is uniform spanwise and the known 
temperature of the fluid is normally not the same at both ends. The mean pressure is 
known. The outer tube wall is thermally insulated. The left and right faces of the tube 
are at the temperature of the entering fluid. The fluid is an ideal gas with constant 
specific heats; its thermal conductivity and dynamic viscosity are independent of 
pressure but they vary with temperature. 

Independent variables present in the problem are as follows : dimensions include 
tube length, inside radius and wall thickness. The gas is characterized by its dynamic 
viscosity p(T) ,  its thermal conductivity k(T) ,  its specific heat c, and the specific heat 
ratio y .  The wall material is characterized by @, c,) ( T )  and k,(T). Operating 
parameters include the mean pressure P, the period 7, periodic velocities and fixed 
temperatures at both ends. These fifteen independent variables result in eleven 
independent dimensionless parameters (Organ 1992 ; Olson & Swift 1994). However, to 
maintain the problem symmetry, instead of using the temperature at one end as the 
temperature scale, an arbitrary additional parameter is introduced : a reference 
temperature qef. Formally, the problem now depends upon twelve dimensionless 
parameters. 

The solution is carried out under the following assumptions: 
(i) The length of the tube L is much larger than the radius R. Inside the tube, the 

radial coordinate r is scaled by R. In the wall, a rescaled transverse coordinate 
u = ( R / d ) r  is used, which varies by 1 across the wall thickness d;  this allows wall 
thicknesses of magnitudes possibly different from the inside diameter to be considered 
(with adjustment to Cartesian coordinates and CT from 0 to 1 if R 9 d ) .  

(ii) The length swept by the fluid motion is of magnitude comparable with the tube 
length. Longitudinal velocities are thus of magnitude L/7 ,  7 being the period, and L,  
the tube length. In particular the dimensionless velocities UL and U ,  at the boundaries 
are of order unity. 

(iii) The heat penetration depth in the gas is large compared to the tube diameter. 
Equivalently, the time scale for transverse conduction in the fluid is smaller than the 
period : 

R2 
e = -  + 1, 

a r e f  7 

in which aref, the thermal diffusivity of the fluid, is evaluated at the mean pressure and 
at the reference temperature. Equation (1) ensures that small transverse temperature 
gradients are sufficient for transferring to the wall the energy advected by the 
longitudinal flow. 

(iv) If, furthermore, the useful thermal mass of the wall is larger than the thermal 
mass of the fluid, then the amplitude of the temperature fluctuation is also small, 
ensuring that the flow is nearly isothermal. If the entire wall thickness contributes to 
the thermal mass (see Assumption (v)), then this is expressed as follows, in which the 
fluid density p is evaluated at the reference conditions, and the wall material properties 
are evaluated at T&: 

(1) 

(v) The analysis is restricted to the case where the entire wall thickness contributes 
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to the thermal mass. The parameter a(T)  defined as follows is then at most of order 
unity; 

( 3 )  a m  7 a(T) = __ 
d2 ’ 

where a, is the thermal diffusivity of the wall material. 
(vi) Longitudinal conduction in the wall is, at most, of the same magnitude as the 

enthalpy flux due to the oscillating flow. In many cases, longitudinal conduction will 
not be significant. Still, transverse conduction in the wall is crucial to acoustic 
refrigeration. It is useful to verify that it is indeed possible to have adequate transverse 
conduction, while longitudinal conduction remains insignificant. 

The condition under which longitudinal conduction in the wall is small compared to 
the energy convected by the fluid is k ,  qef Rd/L < puc, Tef R2, or 7am/L2 4 6. More 
precisely, the analysis targets the case in which heat leakage in the wall is, at most, as 
important as the loss due to transverse conduction in the fluid, in which case the ratio 
of wall conduction leakage to convection in the gas is of order E .  To that effect, a 
dimensionless parameter b(T) which is at most of order unity is introduced: 

d 2  
= a? = b(T)&. (4) 

(vii) Longitudinal conduction in the fluid is negligible, which requires R I L  4 E .  

(viii) Finally, the study is limited to the case where spatial pressure gradients are of 
a magnitude smaller than the amplitude of the temporal pressure fluctuation, which is 
comparable to the mean pressure, thus ,uL2/7R2 < P. For ,u at the reference 
temperature, 

In (5 ) ,  the reference Mach number Mis based upon the velocity scale L / r  and the speed 
of sound at the reference temperature qef. Prref is the Prandtl number at the reference 
temperature, and Reref the corresponding Reynolds number. And because of 
Assumption (iii), R2/la7 = E < 1, so that Prref M 2  4 E < 1. 

This assumption, more restrictive than taking M 4 1, can be explained in an 
alternative way. Equation ( 5 )  requires that the tube length be less than the wavelength 
Lcrit of Rott’s solution in the case of a thick Stokes layer, which was shown by 
Thomann (1976) to be equal to reeli2. 

Summarizing, four of the twelve parameters which the dimensionless problem 
depends upon are small: 

The four small parameters can be varied independently, except that PrrefM2 < e and 
R / L  g E .  The other eight parameters, ,u(T)/pref, y, U,, U,, T,, TR, a(T)  and b(T) are of 
order unity. 

4. Dimensionless periodic boundary value problem 
A periodic solution u(x, r ,  t ) ,  v(x, r,  t ) ,  p(x, r ,  t) ,  p(x, r,  t ) ,  T(x, r ,  t) and Tm(x, c, t )  is 

sought, with period 1, satisfying (6) below. The velocities u and u, and the 
thermodynamic state p, p and T are defined on a cylindrical domain (x, r )  determined 
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by X E  [0, 1 J and r E (0, I]. T, is defined on x E [0,1] and a E [R /d ,  1 + R/dJ  The boundary 
conditions are shown on figure 1. 

The problem has been made dimensionless by scaling x by the tube length L,  the 
radial coordinate r by the radius R, the radial coordinate CT by the wall thickness d, time 
by the period 7, axial velocity u by L/7, radial velocity z' by R / 7 ,  pressure by the mean 
pressure P, temperature, by an arbitrary temperature scale cef, and density, by its 
value at P and c?,: 

- - 
r c?r 

P = PT, 

u(0, r, t )  = UL(t),  u(0, r, t )  = 0, 

T(0, r, t )  = T,(O, r, t )  = TL, 

u(l, r, t )  = UR(t), v(l, Y, t )  = 0, 

T(L r ,  0 = T'&(L r ,  0 = T,, 

u(x, I ,  t )  = 0, V ( X ,  I ,  t )  = 0, 
At the gas-tube interface, 

R 
aa d (6 4 __ a Tm = 0 at the outer tube wall, a = 1 +--, 

/:p(1/2,O,t)dt = 1 

Equations ( 6 a )  and (6b)  are the momentum equations; (6c)  is continuity; ( 6 d )  and (6e)  
are the energy equations, respectively for the fluid and for the wall; ( 6 f )  is the equation 
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x = o :  x = l :  

T= TL T =  TR 

FIGURE 1. Solution domain, coordinates and boundary conditions. 

of state. (The energy equation for the fluid, (6d) ,  is the total energy equation, including 
thermal and kinetic energy. In the thermal energy equation, the contribution of order 
e would be 

u = UL(t) u = UR(i) 

____ la('pT) +- 1 v. (up) + Y-1 -pv. u. 
Y at Y Y 

This is equal to the term of order e in ( 6 4 ,  minus [ (y -  l)/y]u.Vp which, in view of 
the momentum equation, is of order M 2  and results in the second (kinetic energy) and 
third (viscous heating) terms of (6d).) Equations ( 6 g H 6 s )  are the boundary 
conditions; in (6g,k) ,  UL(t) and UR(t) are known periodic functions with period 1. 
Finally, the auxiliary condition (6 t ) ,  necessary for well-posedness, sets the dimensionless 
mean pressure equal to 1. 

5. Perturbation solution 
5.1. Perturbation series 

According to (9, Prref M 2 / e  4 1. Consequently, the largest independent small 
parameters that appear in the problem are €, 6, R2/L2 and PrrefM2/e.  To the 
magnitudes of interest, the solution to orders depending upon R2/L2 remains fully 
decoupled and has no impact on the solution being sought. Furthermore, no 
assumptions have been made regarding the relative magnitudes of these parameters, 
and 6 only appears in equations that involve T,: hence the perturbation series: 

PI2 + €"2, + . ..> Prref M 2  
6 

P =Po+ePll+ (7 4 

The two key effects of R2/L2  being small are the usual ones: the transverse pressure 
gradient is smaller than the longitudinal pressure gradient, and longitudinal diffusion 
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of momentum and heat is negligible compared with transverse diffusion. This affects 
the boundary conditions, which have to be expanded in perturbation series also, and 
be ascribed to the term of the appropriate magnitude. The original heat equation was 
elliptic in x and thus supported, in principle, temperature boundary conditions at both 
ends. But because longitudinal conduction is neglected in the leading-order energy 
equation for the fluid, the leading-order problem is now hyperbolic in x, and it can only 
support one boundary condition for temperature, at inlet but not at outlet. This is 
consistent with the fact that, physically, it is possible to supply fluid at a given 
temperature, but the temperature at which the fluid leaves the system is determined by 
heat transfer inside. In the current problem, however, the flow oscillates, and each end 
operates as an inlet during part of the period. A temperature boundary condition can 
only be enforced, at each end, whenever the velocity at that end is in the direction 
entering the tube. 

5.2. Leading order problem 
Expressing pressure, temperatures, density and velocities by the perturbation series (7) 
in (6), and collecting the leading-order terms, one obtains 

/:podt = 1. 

This set of equations leads to the classical Schmidt isothermal solution. This problem 
can be separated into the wall problem and the fluid problem. 

The wall problem is parabolic in t and CF, with x appearing only as a parameter. The 
unique periodic or stationary solution to (8 e)  with the boundary conditions given by 
(8s, t )  is T,, = Tmo(x) defined by the initial conditions, which are arbitrary so far. 

For conduction in the gas, the only solution to ( 8 4  with T, finite at  r = 0 is 
& =, 'T;,(x, t) .  But since at the wall-gas interface, according to (8q) ,  temperature is 
continuous, then T,,, = 7;, = T,(x). Both temperatures are equal; they are time 
independent and uniform in r and a; and they only depend upon the longitudinal 
position x. Thus, to leading order, the flow is isothermal. 

Equations @a) and (8h) indicate that the pressurep, depends upon time only. Next, 
density is replaced by its value from the state equation, p,, =p,(t)/T,(x), in the 
continuity equation (8c): 
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Integrating (9) divided by T,  over the whole tube volume, with velocities at the ends 
given by ( 8 g )  and (8k), and temperatures by (89  and (8 m), it follows that 

= 0. 

Integrating (10) with respect to time over the whole period, the work done by the 
pressure forces at the ends is found to be related by the Carnot relationship, which is 
consistent with the Schmidt solution. The leading-order solution is thus fully reversible. 

Integration of (10) divided by p o  with respect to time yields a value for pressure: 

Since T, is now a function of x only, the mean temperature T defined by (12) is an 
absolute constant, the value of which is, however, unknown at this stage. 

Leading-order pressure depends upon time only while temperature depends upon x 
only. The dependency of the temperature on x remains indeterminate, however. For 
velocities, the single equation (9) relates the two unknown velocity components uo 
and vo. 

5.3. Problem of order Prref M 2 / e  
Velocities depend upon the momentum balance. To leading order, the momentum 
equation, (6 a), resulted in pressure being spatially uniform. Indeed, the largest 
contribution to pressure gradients is due to viscous stresses and is of order Pr,,, M2/e .  
Collecting terms of that magnitude in (6a ,  b), with the unknowns replaced from (7), 
gives 

( 1 3 4  b) 1 applz - AT,) 1 a(rauOlw -- aPlz - 0. 
y ax p,, r ar ' dr 

It follows from (1 3 6) that plz = p12(x ,  t ) .  Thus, integrating ( 1  3 a)  twice with respect to 
r ,  noting that the left-hand side is independent of r ,  and taking into account that 
velocity cannot be singular at r = 0, and that, from (60) ,  at r = 1, u = 0, one obtains 

Replacing uo by this value in (9), multiplying by r and integrating with respect to r 
between 0 and 1, and taking into account that, according to (6p) ,  v, = 0 at r = 1 and 
that also, by symmetry, vo = 0 at r = 0, results in 

Integrating (9) times r between 0 and r and taking (15) into account, it follows that 

However, neither uo given by (14) nor v, given by (16) satisfy the boundary conditions 
at x = 0 and x = 1, equations (Sg, h, k, I). This entry length issue can be resolved by 
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introducing an inner problem at each end, locally rescaling x by a factor R/L .  
Introducing a rescaled longitudinal coordinate X, for instance at x = 0, X = ( L / R )  x, 
and noting that within the entry length, there exists a transverse velocity of magnitude 
L/r  so that a rescaled transverse velocity V = (L /R)u  must also be introduced, the 
continuity equation becomes 

Furthermore, the leading-order pressure and temperature remain uniform in the entry 
region, for the same reasons as in the outer region, so that, to order E (because of 
temperature) and R / L  (because of the first term in the rescaled equation), velocity is 
divergence free in the entry region, while because of the rescaling the pressure gradient 
only would contribute to a smaller correction, of order R / L  times Pr,,M'/ls. After 
integration over the entire cross-section, this indicates that, up to corrections of order 
R / L  and e, the mass flow rate is uniform along the entry length. 

Thus, matching the entry (inner) problem with the outer problem merely requires 
that the total volumetric flow at the extremity of the outer problem be equal to the total 
volumetric flow from the boundary condition, (8g, k ) .  This can be written as 

nU,(t) = u0(O, Y, t) 27crdr, (17) 

nUR(t) = ~ ~ ( 1 ,  r ,  t)27crdr. (18) 

i: 
s: 

The rescaled problem will take care of the necessary adjustments. The differences 
between the velocity at the end of the tube and the matching velocity at the interface 
between the inner, rescaled zone and the outer zone are of order R / L  and e, but there 
is no difference of order Prre fM2/e .  Similar considerations, but to order Pr+.,,M2/e, 
apply with respect to the transverse velocities and the boundary conditions given by 
@,h, 1). 

Taking (14), (1 5) ,  and respectively (17) and (1 8) into account, one finds that 

and 

The global mass flow rate over the entire cross-section is given by 

U,  dp ' 1 m, = 7c ( P o - - -  TL d;J, zdx) 
The leading-order flow field is now determined except for T,(x). In an initial value 
problem, T,(x) would be fully determined by the initial conditions. Thus, at this stage, 
any arbitrary temperature profile would provide a valid solution. 

The pressure gradient can be determined, replacing uo in (14) by (21): 
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Boundary conditions for p,, are obtained from the continuity equation of order 
Pr,, M /c ; 

Integrating over the entire cross-section, the last term vanishes. From (6g, k) ,  the 
velocity u12 = 0 at x = 0 and x = 1, since the entire non-homogeneous velocity 
boundary conditions, which are of leading order, have already been included in the 
leading-order boundary condition uo given by (1 7) and (1 S), and since the corrections 
due to the inner, entry length region, by virtue of being of order e and R/L,  but not 
Pr,, M 2 / e ,  do not contribute to u12, which is thus 0. Integrating over the whole tube 
length and taking into account also that plz = po T,, +p lZ  To, with T,, zero throughout 
since the problem for T,, is homogeneous so that p12 = T,p,,, one obtains 

p l z  is independent of r,  since p,, is according to (13 b), and plz/po = p1,/p0. Also, the 
last term in (26) can be replaced from (10). Thus 

and p12 is obtained by integrating (23) : 

Substitutingp,, from ( 2 Q  and p l Z ,  -pI2, from (29), into (27), the following equation 
is obtained: 

Integration of (30) yields the left-hand boundary value of PI,. Finally, (29) determines 
the value of p l ,  at the right-hand end. Both values are determined up to an absolute 
integration constant, which is all that is needed to evaluate the viscous losses. 

5.4. Problem of order e 
To leading order, (6d), the energy equation for the fluid, led to a gas temperature that 
was uniform in the transverse direction. The next non-trivial perturbation to that 
energy equation is smaller by a factor c, so that the transverse temperature gradients 
are of order e. 
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One complication arises, however, from the continuity conditions at the gas-wall 
interface: both temperatures and heat fluxes are continuous. Replacing T and T, by 
their perturbation series in (6v), continuity of the heat flux implies that at r = 1 or, 
equivalently, at cr = R / d :  

k(T,,+tT,, + . . . ) c ? (  ~ T , + ~ ~ T , , + S ~ T , , + E ~ S T , , . . . )  
kf u ,  c'r 

so that, at the interface, 

but also, from ( 8 r ) ,  

At the interface, the gas temperatures of order E match values also of order c for the 
wall, while the transverse temperature gradient of order E in the gas must be matched 
to the gradient of order 6 in the wall. Therefore, the problem of order c for the gas is 
related to both problems, of order e and 8, for the wall. 

q,(-x,  I ,  t )  = Tmll(-x, R / d  0 and L ( x ,  I ,  = Tmla(x, R/d,  t) .  (33~1 ,  b) 

The wall problem of order c; includes 

which is the perturbation of order E to (6e ) ,  with Neumann boundary conditions given 
by (32a) ,  and by the perturbation to (6s): 

It is a problem in IT and t with homogeneous boundary conditions, in which x enters 
only as a parameter. Its unique stationary or periodic solution is q,',,, = Tml1(x). 

The problem of order E for the gas temperature, which, because of continuity of the 
heat flux vector, is coupled with the problem of order S for the wall, can be described 
by the following equations, obtained by collecting terms of order E in the relevant 
equations (6) with the values for pressure, temperatures, density and velocities replaced 
from (7): 

T, , (O,  r ,  t )  = T,,,,(O, r ,  t )  = 0 
ql(L r,  t )  = T,,,(I, r ,  t )  = 0 

when 
when 

u,,(O, Y, t )  > 0 ,  
~ " ( 1 ,  r ,  t )  < 0. 

( 3 6 f )  
(36g)  
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uo and vo are replaced (in 36a) by their values from (21) and (16), and after integration 
of the result, the value of aT,,/ar is obtained; at the wall, for r = 1, it is given by 

After a second integration, the value of T,, in the field is found, given by 

(38) 
noting that, by virtue of (36c),  at r = 1, T,? = T,,, which depends upon x only. 

The temperature scale cef was chosen arbitrarily. But the dimensional value that can 
be reconstructed from T,, given by (38) is well-defined, because the product s c e f  is 
independent of that arbitrary value cef. Indeed, cc is proportional to k divided by 
density, and thus proportional to cef, so that s is inversely proportional to Tef .  The 
magnitude of the temperature perturbation is then found as 

5.5. Problem of order s2 

So far, to order 6 ,  all variables are unconditionally periodic, and all energy fluxes are 
unconditionally balanced over one full revolution. The highest order at which energy 
transfers occur which are not inherently balanced 
corresponding energy equation for the fluid is 

for arbitrary T,(x) is 2, and the 

which is the perturbation of order s2 to ( 6 4 .  The continuity condition for the heat flux 
at the interface, given by (3 1 )  - see Q 5.4 above - relates the flux of order s2 in the fluid 
to the flux of order sd in the wall, and can be written as 

(39 b) 
The corresponding energy equation for the wall is thus of order en, and it is given by 

Finally, 
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The problem of order 2 provides the condition ensuring that energy transfers are 
balanced, so that the solution is periodic. The overall energy balance is obtained by 
integration over the entire cross-sections. The details are as follows. Integrating (39 a) 
multiplied by 27cr dr, with respect to r ,  between 0 and 1, and (39 c) multiplied by 2ncrdcr 
through the pipe wall, for cr from R/d to 1 + R/d, two equations are obtained which, 
in view of (36e) and (39b), have opposite right-hand sides, up to a factor R/d. 
Eliminating the right-hand sides, integrating with respect to time over a full period, and 
taking into account that the solution is periodic in time, and that T,, = To, one obtains 

Replacing pll  = po T,, +pll To and po = po To in the first term of (40), and noting that 
To is independent of t and r ,  it follows that 

“ (S :d tJ~uopo dx dx ( ~ ~ p ~ ~ + ~ ~ ~ p ~ ) 2 ~ r d r  

(41) 

The second integral in (41) vanishes, since it is an expression for the net mass flow rate 
of order e over one full period. Integrating (41) with respect to x, defines the quantity 
Hl, 

~ t ~ p ~ T , ~ 2 n r d r - b ( ~ ) 7 c ( 2 + d / R ) - ,  dT,, 
dx 

which represents the energy transferred along the tube over one period. This quantity 
is usually referred to as the enthalpyjux, following an original suggestion by Wheatley 
et al. (1983). At the periodic regime, it is uniform lengthwise, hence an absolute 
constant. (H ,  = 0 since To is time independent and pouo is periodic.) Replacing uopo 
and T,, by their values as functions of To and using the mass flow rate Yi2,(x, t )  given 
by (22), the enthalpy flux can be written as 

-rno+(r2-  1)-- 
Y dt 

r4 - 4r2 + 3 dT, . 

dT0 x Y dr - b( To) ~ ( 2  + d/R) - . (43) dx 

Finally, the integrals with respect to r are computed: 

ff,, = _ _ ~ _ _  - 11 kref dTo midt+--- y-  kref  1; Yiz, 2 dt - b( T,) $2 + d/R)  ~. d TO (44) 
48n k( T,,) dx 1, 6Y 4TO) dx 

If, in (44), mo is replaced by its value from (22), and po by its value from (1 I), a first 
order integro-differential equation for T, is obtained. Two boundary conditions are 
available, since temperatures are known at both ends. The problem is not 
overdetermined, however. In (44), the absolute constant H,, is unknown, and 
furthermore, through po, (44) also depends upon T, also an absolute constant, given as 
a function of the solution To by (12), and initially also unknown. In effect, both HI, and 
T appear as eigenvalues. Equation (44) shows that three components contribute to 
the enthalpy flux. The first term corresponds to a contribution that always goes in the 
direction opposite to the temperature gradient. It is proportional to the mean value of 
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the square of the mass flow rate mo, and it exists and is non-zero even if pressure is 
uniform. The second term, which is non-zero only if there is a pressure fluctuation and 
to the extent that pressure and mass flow rate are out of phase, can contribute a j u x  
against the temperature gradient, i.e. reversible heat pumping. The third term represents 
the contribution of conduction in the wall. 

When the mass flow rates at both ends are equal at all times, then, according to (lo), 
the leading-order pressure remains constant. (Because of the near-isothermal 
assumption, temperature fluctuations are too small to result in leading-order pressure 
changes.) Equation (44) shows that the longitudinal temperature gradient is then 
uniform, even if longitudinal conduction in the wall is significant, provided that the 
thermal conductivity of the wall, hence b, is temperature independent. 

Equation (44) shares the main features of the result obtained in a similar one- 
dimensional near-isothermal model (Bauwens (1 995) in which a convection coefficient 
from an empirical correlation between Reynolds number and Nusselt number was 
used. For laminar flow in a straight tube, the Nusselt number for uniform heat flux 
equals 48/11. Using that value for the Nusselt number, the one-dimensional model 
yields the enthalpy flux given by 

HI, = --__ midt+--- y-  1: mo dt - b 4 2  + d/R) - d T, . (45) 
-11 kref dT, 
48n k(To) dx lo 48 y k(T,) dx 

This shows that the one-dimensional model does not evaluate correctly the contribution 
of the pressure swing to the enthalpy flux, which it overestimates by a factor 11/8, or 
37.5%, in the case of laminar flow in a tube. 

Both Thomann (1976) and Rott (1975) have proposed expressions similar to (44), 
respectively for tubes larger and smaller than the Stokes layer, but for the local enthalpy 
flux. These studies considered the case of arbitrary, unbalanced wall temperatures, 
within the scenario of incipient Taconis waves, in which the wall temperature, hence 
the net heat stored in the wall, is changing, so that, in contrast with the current 
solution, their enthalpy flux is not uniform lengthwise. 

6. Tube closed at one end 
Rott (1984) has paid particular attention to the problem in which one end of the tube 

is closed. The end at x = 0 is now blind, so that U, = 0. In the limit case when 
longitudinal conduction in the wall is negligible (b = 0), the mass flow rate given by 
(22) becomes 

which shows that velocities are now in phase throughout the length. The enthalpy 
flux is 

(47) 
H,, = - 7~ kref (- 11 __ dTo 1 dx + *) f dx J: r2)' dt. 

k(T,) 48 dx T, 6Y 0 0 

Since the factor between brackets on the right-hand side of (47) has a finite limit for 
x + 0, while if the total mass of fluid in the tube is finite, the factor ji (1 /To) dx + 0, H I ,  
is necessarily zero. This is because there is no longer any physical mechanism present 
in the model that could remove energy from the left-hand end. Indeed, longitudinal 
conduction in the wall and in the fluid have now been neglected, and at x = 0 velocity 
is always zero, so that there is no convection either. 
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FIGURE 2. Tube closed at left-hand end ~ longitudinal temperature profile TIT,,. 

However, away from x = 0, the last two integrals in (47) are not zero, except in the 
trivial case where pO is uniform. Thus, since H,,, being uniform lengthwise, is zero 
throughout the length, the factor between brackets necessarily vanishes, so that the 
temperature profile is determined by the differential equation 

I l d T ,  ’ 1 
-- 48 dx 1,) r, d.u + El! = 0. 

6Y 
Integration by parts of the first term, followed by integration of the whole equation, 
results in 

which can be integrated again, yielding 

and, finally, 

That a left-hand temperature boundary condition can no longer be imposed should 
come as no surprise, since physically there no longer is any fluid entering from the left, 
so that the original problem no longer supports a left-hand temperature boundary 
condition. Taking into account that at s = 1 ,  T, = T,, one finds 

(52) 
T =  11yTH/(3y+8). ( 5 3 )  

Knowing T,  p o  is determined by (1 l), uo by (21) and Y,, by (16), thus completing the 
solution. Figure 2 shows the temperature profile as given by (52), for helium ( y  = 5 / 3 ) .  
Pressure gradients can readily be calculated by numerical integration of (29) and (30). 

These results show that the leading-order temperature 7;) exhibits a singularity at the 
closed end, .u = 0. The magnitude assumptions break down near x = 0 and a different 

T = T y 8 ( y - - I ) / ( 8 ; / + 8 )  
O R  



152 L. Bauwens 

distinguished limit involving some of the terms which have been neglected, such as 
longitudinal conduction, becomes applicable in a narrow zone, limiting the temperature 
to a finite value. 

A detailed solution in the case where b =k 0 can be obtained following the same 
procedure as in the next section, setting J = 0. A system in which a heat exchanger or 
an adiabatic volume is placed at the closed end can also be analysed following the 
procedure in the next section. In all these cases, the mass flow rate remains in phase 
with dp,/dt. But since H,, is no longer zero, (47) no longer simplifies to (48). 

Rott (1984) found an identical behaviour for the singularity that occurs at the closed 
end of a tube, with same exponent, equal to - 8 (y  - 1)/(3y + 8), also in narrow tubes. 
The current result is thus a generalization of Rott’s for high pressure amplitudes, but 
for shorter tubes. 

It is a pleasant surprise that for this problem of a tube closed at one end, the one- 
dimensional near-isothermal model with empirical convection coefficient, but assuming 
flow passages smaller than the Stokes layer thickness, yields an exponent equal to 1 - y 
(Bauwens 1995), which is the same value obtained for tubes larger than the Stokes layer 
thickness, according to an argument originally proposed by Gifford & Longsworth 
(1966) and discussed by Rott (1984) and Wheatley et al. (1983). This is because the one- 
dimensional model and Gifford & Longsworth’s argument share the assumption that 
the fluid temperature is spatially uniform in the transverse direction, except possibly for 
a discontinuity at the wall. Thus, their argument holds also for the assumptions 
embedded in the one-dimensional model, in which the only role of the assumption of 
thick Stokes layer is to ensure that it is nearly isothermal. 

The two models differ significantly in another respect. Physically, the key to both 
models is energy conservation for the temperature perturbation T,,, which is given here 
by 

obtained from (36a). Equation (54) shows that there is a balance between longitudinal 
convection, changes in internal energy, transverse convection, and transverse 
conduction. 

Irreversibilities only occur in this model because of conduction in the transverse 
direction. But the following equation 

obtained by specializing (38) to the case of tubes closed at one end, shows that 
q, has a non-zero transverse gradient, even though since the enthalpy flux equals 
zero, its average value, weighted by po uO, is equal to T,,, (see (42), setting b = 0 and 
HI, = 0) and, obviously, its value at the wall is also equal to T,,,. Thus, there is 
irreversible conduction in the transverse direction in the fluid even with zero net enthalpy 
flux. In contrast, the one-dimensional model simply results in T,, = Tmll(x): there is no 
discontinuity at the wall. That model cannot differentiate the mean, mass-averaged 
temperature from the value at the wall. The bulk temperature of the fluid is then equal 
to the wall temperature in the one-dimensional model, which effectively results in a 
reversible solution, when the correct two-dimensional solution shows that it is not. 
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7. Tube open at both ends 
A solution similar to that obtained in the previous section can also be obtained in 

the case of non-zero velocity boundary conditions at both ends. This solution applies 
for example to tubular regenerators, or to a tube with a closed volume, such as, for 
example, a heat exchanger, at the end. 

As above for tubes closed at one end, in the solution that follows, longitudinal 
conduction in the wall is again neglected, and b is set equal to zero. (A solution 
including conduction in the wall would only require a slight modification in the 
definition of the constant K, below.) Additionally, the thermal conductivity k of the 
fluid is assumed to be temperature independent. (For temperature-dependent k ,  
equation (66) below cannot be integrated in closed form; but a numerical solution can 
still readily be implemented using a similar procedure.) 

The strategy is similar to the previous section, but an iterative solution is now 
required. Again, ko is replaced by its value from (22) in the enthalpy flux equation, 
(44), which is then solved for and the eigenvalue HI, .  It is convenient to rewrite the 
problem in terms of Ax) defined by 

instead of q(x), thus eliminating the integral of l/To and transforming (44) into a 
straightforward, if nonlinear, ordinary differential equation. 

For simplicity the following notation is introduced. The coefficients defined by 

are time-integrals over one full revolution of quantities that depend upon po(t)  and the 
velocities at the ends, but are independent of x. Consequently, they are absolute 
constants, but unknown since they depend upon T. The quadratic form I f z  - 2Jf+ K 
is then given by 

Rewriting (44) in terms offlx), and using the newly defined parameters I ,  J and K, (44) 
is transformed into 

1 l n  f 7cy-1 
TH,, = ~ ( Z f 2  - 2Jf+ K )  - - -~ (If- J ) .  

48 .f2 6 Y 

a second-order ordinary differential equation for J: Besides Ax), (61) contains two 
additional unknowns, the absolute constants Tand H,,, which must be counted as two 
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separate unknowns because I ,  J and K also depend upon 7, independently of H l l .  But 
there are four boundary conditions: 

df T At x = O ,  f = O  and -=-  
dx TL' 

In principle, the problem is thus determined. Equation (61) can be rearranged as 
follows : 

7 .  f" - 48TH11/11~+&(y- l ) / y ( I f - J )  
7 -  
- 

I f 2  - 2Jf + K 

Integrating between 0 andfand taking into account the boundary conditions at x = 0, 

The quadratic form rf' - 2Jf+ Kis a sum of exact squares. Its roots are complex except 
if the integrand in (60) vanishes for a value offthat is time independent, in which case 
the double root i s f =  J / Z .  In that case, for reasons similar to those seen above in the 
closed tube at x = 0, H,, = 0 and, from (64),f = 0 at the location whereJTx) = J /Zso  
that the local temperature goes to infinity at that location. However, except for a phase 
angle between velocities at the ends equal to 180" (see below), the quadratic form is 
strictly positive, thus avoiding the singularity. Integrating (63) between x = 0 and 
x = 1, TH,, is obtained: 

Finally, integrating (64) between 0 and x, gives 

which givesflx) implicitly, and integrating the same equation between 0 and 1, gives 

which determines T. However, I, J ,  and K depend upon T, which is unknown initially, 
so that a technique such as, for instance, an iterative numerical solution starting with 
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FIGURE 3. Geometry. 
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FIGURE 4. Tube open at  both ends - mean temperature, as defined by equation (12), 
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a guessed value of T and eventually converging to a fixed point is required. But here, 
a procedure based upon a systematic search is implemented. A range large enough to 
contain all possible solutions for 7 is divided into small intervals. The intervals within 
which a solution exists are those over which the difference between the guessed value 
and the calculated value changes sign. 

The results below correspond to the geometry of figure 3, for a temperature ratio 1 : 5 
(for instance 65 K/325 K), and for helium (y  = 5 / 3 ) .  The piston motion is sinusoidal, 
with amplitudes equal to 0.1 and 2.2 and dead volumes to mid-stroke equal to 0.1 1 and 
2.4 times the volume of the tube. The phase angle between pistons ranges from 0 to 
180". Temperatures in the cylinders are constant, which implies that the cylinders are 
in thermal contact with a heat source or sink at the appropriate temperature. This 
geometry actually describes a refrigerator; it was chosen because it is equivalent to a 
geometry used in the previous study with a one-dimensional approximation (Bauwens 
1995, high pressure amplitude case). 

Figure 4 shows how T varies with the phase angle. Figure 5 shows the reversible 
leading-order refrigeration (equal to the leading-order work done at the cold end, since 
the leading-order enthalpy flux is zero) and the dimensionless enthalpy flux HI1, of 
order t, L'S. phase angle. The scalars by which the leading-order refrigeration and H I ,  
must be multiplied to recover dimensional values in Watts are respectively nPR2L and 
y2P2R4L/(y - 1)'~kT'. (These results cannot be translated into global performance 
data such as coefficient of performance or ineffectiveness, except for specific values of 
the scalars. Likewise, Hausen's (1929) concepts of reduced length and reduced 
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FIGURE 6. Tube open at both ends - longitudinal temperature profiles at 45", 90" and 135" phase 
angles (higher curve corresponds to a larger phase angle). 

frequency (also in Schmidt & Willmott 1981) do not apply, because heat transfer is not 
based upon a constant empirical convection coefficient but evaluated from first 
principles, and because the mass flow rates at the extremities are time dependent.) 
Figure 6 shows temperature profiles for three values of the phase angle. 

Figure 7 shows that, as the phase angle approaches 180", the solution exhibits a 
sharp spike approaching infinity in the temperature. At 180", velocities and mass flow 
rates at the ends are in opposite phases, and according to (1 l), pressure is then in phase 
with the largest of the mass flow rates at the ends. The mass flow rate no longer has 
a phase that shifts with position along the length. Instead, the tube can be divided into 
two parts, in each of which the mass flow rate is in phase with the mass flow rate at 
the end. At the location x* separating the two regions, the mass flow rate remains zero 
throughout the period. The quadratic form I f 2 + 2 J f + K  defined by (60) is then a 
perfect square and its zero,f= J / I ,  defines the value offix*) at the interface x*. In 
effect, each side operates as if a rigid boundary existed at x*, and each side can be 
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FIGURE 7. Tube open at  both ends - longitudinal temperature profiles a t  170°, 175" and 180" phase 
angles (higher curve corresponds to a larger phase angle - at  1 SO" peak truncated to  a finite value 
because of numerical inaccuracy). 

described as a tube closed at one end. Thus, a singularity occurs at x*, of the type 
previously described for tubes closed at one end. H,, is zero and the temperature goes 
to infinity at .Y*. (On figure 7, however, the peak remains finite at 180" because of 
numerical inaccuracy). 

Except in the neighbourhood of 180" when effects of pressure fluctuations become 
more significant, the numerical results are virtually identical to results obtained 
previously using the one-dimensional model (Bauwens 1995) in which the term 
representing the effect of pressure fluctuation in (44) was overstated by a factor 11/8 
for round tubes. Thus the effect of pressure fluctuation does not appear to be very 
significant in regenerators. 

Finally, while no results were presented for the pressure gradient, it is worth 
mentioning that the solution also determines the viscous losses. Indeed, once T,  T,(x) 
and p , ] ( f )  have been found, it is straightforward to integrate (30) and (29) numerically, 
and to calculate the contribution of order Pr M'/a to the pressure fluctuations at both 
ends. If Pr M'! is larger than 2, these losses can be larger than the enthalpy flux. 

8. Enthalpy flux and pulse-tube refrigeration 
I t  is clear that the theory applies to regenerators. Indeed, while the leading-order 

enthalpy flux is zero, in the general case studied, with non-zero velocities at both ends, 
there is a non-zero, uniform entropy flux moving along the tube. This is equivalent to 
a 'work' flux and a 'heat' flux moving along the tube, both of same magnitude, equal 
to the entropy flux times the local temperature, but moving in opposite directions. The 
energy fluxes are thus balanced at both ends, i.e. the work absorbed equals the heat 
released at each end. This describes the ideal Stirling refrigerator, in which the 
reversible regenerator merely moves a uniform entropy flux from one end to the other, 
resulting in the Carnot efficiency. That the theory also describes basic pulse-tube 
refrigeration is perhaps not so obvious. 

In the absence of a heat exchanger or, as in the basic pulse-tube, of the piston at one 
extremity, because the leading-order work and heat fluxes are necessarily balanced at 
the ends and one of them is now zero, so is the other. As a result, the leading-order 
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entropy flux vanishes too and all leading order fluxes are thus necessarily zero. The 
enthalpy flux of order c, H,,, becomes the largest non-zero energy flux. If, in (44), the 
term in ydz, dp, is positive and larger than the terms that depend upon the temperature 
gradient, H,, goes in the direction from the cold end to the warm end. 

If H I ,  is larger than the work done by the piston at the cold end, then there is net 
refrigeration. This heat pumping mechanism relies upon periodic exchange between 
work from pressure forces and heat stored in the wall. It crucially depends upon the 
phase relationship between pressure and mass flow rate, which varies along the tube. 
This is fundamentally the same heat streaming effect originally identified by Gifford & 
Longsworth (1968), studied by Rott (1975) and Merkli & Thomann (1975), and also 
described by de Boer (1994, 1995). 

In the first case above, of a tube closed at one end, the two main terms in (44) were 
found to be non-zero, but they exactly balanced each other, leading to a zero overall 
enthalpy flux H,,. If a heat exchanger is added at the warm end, limiting the local 
temperature to a finite value, then H I ,  is no longer zero. If appropriate conditions are 
met, resulting in an entropy flux leaving at the warm end larger than the total entropy 
produced, net refrigeration occurs. If the heat exchanger placed at the warm end has 
a sizable dead volume, though, and even if the fluid in the heat exchanger is assumed 
to remain at a fixed wall temperature, this system then falls within the realm of the 
second case above, in which velocities are non-zero at both tube ends. Indeed, while the 
detailed results shown above considered a configuration with pistons at both ends, the 
solution developed in the second case, which merely assumes that the velocities are 
non-zero at the ends, remains valid and unchanged even if l: uopo dt = 0 at one end, 
so that all leading-order fluxes vanish and H,, becomes the largest non-zero flux. 

But the main goal of the current study was to establish the basic theory. An 
investigation of that particular configuration and, more generally, of the basic 
pulse-tube, which may also include the regenerator, will require some additional issues 
to be dealt with, however. This includes matching between the regenerator, in which the 
quantity d2/ar,  based upon the mesh size, is typically indeed very small, and the pulse- 
tube, in which the assumption of small € will probably not be so accurate, so that in 
effect, these two zones are best dealt with using two independent perturbation schemes. 
In a study of the complete device, boundary conditions will require a different 
treatment, since the velocities at the interfaces can no longer be imposed, but they 
depend upon the overall configuration. Perhaps more significantly, complete 
performance evaluation will require not only the enthalpy flux to be evaluated, but also 
the entropy flux, so as to allow for a division of the enthalpy flux into heat and work 
at the tube ends. This is dealt with in a separate study that builds upon the current 
theory, but targets specifically the basic pulse-tube refrigerator, with a freezer at the 
cold end, and in configurations with or without regenerator (Bauwens 1996). 

Finally, considering pulse-tube refrigeration in the small-tube limit, it is clear that, 
generally, the enthalpy flux includes a reversible component. And since the same 
fundamental mechanism is responsible for both the enthalpy leaking through a 
regenerator and for pulse-tube refrigeration, then typically, in regenerators also, there 
should be a reversible component in the enthalpy flux, which is thus not entirely a loss. 
However, one of the conclusions of the second case studied in detail above was that the 
effect of the pressure fluctuation term in (44) was minimal in regenerators. This seems 
to indicate that the reversible component will usually not be very significant. 
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9. Conclusions 
A closed-form approximate solution to the periodic, two-dimensional, oscillating 

flow boundary value problem with heat transfer and large pressure swings in a 
cylindrical tube was developed, with viscous stresses and heat transfer based upon the 
appropriate laws of molecular diffusion, avoiding empirical convective heat transfer 
and friction coefficients. 

The perturbation solution determines the enthalpy flux and the longitudinal 
temperature profile attained in the periodic regime, thus resolving the indeterminacy of 
the isothermal Schmidt model. Key to the solution is the requirement that the small but 
non-zero total longitudinal enthalpy flux, which appears as a small perturbation to the 
isothermal solution, must be uniform along the tube length. That requirement can be 
translated into an integro-differential equation for the time-independent leading-order 
temperature, which remained arbitrary in the isothermal solution. 

The current solution determines the uniform enthalpy flux at equilibrium, and the 
corresponding equilibrium temperature distribution. This contrasts with the work of 
Rott (1975) and Thomann (1976), who also investigated the enthalpy flux in periodic 
flow, although in a longer tube and for smaller pressure amplitudes, but whose analysis 
was limited to initial, arbitrary temperature profiles, in which case the flux varies 
lengthwise. 

Results were presented for two configurations: with one end closed and with two 
open ends. The first configuration is a classical problem, for which a closed-form 
expression for the temperature distribution was found. The second configuration 
corresponds to tubular regenerators. The assumptions made accurately reflect 
regenerators in Stirling and possibly in some pulse-tube refrigerators. The model 
determines the entropy flux (hence, in the case of regenerators, the leading-order 
refrigeration), the enthalpy flux and the pressure gradients and associated losses, which 
are possibly even larger than the enthalpy flux, thus fully characterizing the 
performance of the device. 

Results from the model show that: 
(i) In a tube closed at one end, a temperature singularity occurs at the closed end. 

The temperature profile is given by a power-law relationship with longitudinal 
position. The exponent, valid for arbitrary pressure amplitudes, is the same as found 
by Rott (1984) for small pressure amplitudes; 

(ii) In tubes open at both ends. when the mass flow rates at the ends are of opposite 
phases, the temperature may go to infinity at a location inside the tube where the 
velocity remains zero throughout the period. That singularity is similar to the one 
observed at closed ends; 

(iii) One-dimensional models with empirical convection coefficients (Nusselt 
numbers) yield results that, according to this study, are correct only for tubes larger 
than the thermal layer, even in the case of laminar flow in a tube smaller than the 
thermal layer ; 

(iv) The current theory contains the basic physics of basic pulse-tube refrigeration, 
albeit in the narrow limit. 

We thank Professor Nicholas Rott for his encouragement and for his penetrating 
comments. Work supported by the Natural Sciences and Engineering Research 
Council of Canada. 
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